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Abstract

The introduction of the Instruction Set Architecture (ISA) marked an important begin-

ing for current computer systems. Thanks to the separation between hardware and software

that provides the ISA, there has been tremendous research conducted on novel hardware ar-

chitectures and new high level software frameworks. With innovation came an ever growing

gap between a programs description and how its executed on hardware.

High performance computing, in their desire to reach extreme computational limits, has

pushed computer systems to new limits. Scientists running applications on high perfor-

mance computers expect these systems to deliver a high throughput efficiently and reliably,

while maintaining flexibility, programmability and energy efficiency. HPC machines exhibit

different features and behaviors based on their architectural characteristics: they could have

accelerators or be a collection of computational units with a non-uniform memory access.

However, prototyping and developing strategies for HPC systems can be costly and dif-

ficult to achieve. Furthermore, the direction of parallel computing, and its importance in

HPC, lacks of a unifying and widely acceptable contract (akin ISAs) which distinguishes the

program description from the low level execution on target hardware; namely, a program

execution model (PXM). By decoupling the description of the hardware infraestructure, the

programming API used to program this hardware, and the rules that determine the interac-

tion of a program through execution on this hardware, we could improve programmability,

performance and portability. Furthermore distinguish the software development from hard-

ware development.

Aiming to develop a low-cost, flexible and versatile parallel machine for hardware-

software co-design of program execution models research, we present DEMAC (Delaware

Modular Assembly Cluster) and CODIR (Codelet Intermediate Representation). DEMAC

provides the necessary tools to develop and test novel features for the next generation of

supercomputers. It includes a set of 3D-printed frames that can house several card-sized

multi-core embedded systems. Along with a full open source stack, these small computers

feature Parallella boards containing a Zynq-7000 series SoC with a dual-core ARM processor

and an FPGA that interconnects with a 16-core co-processor called Epiphany. All individual

nodes are connected through an Ethernet network. An initial version of a runtime based on

Dataflow’s Codelet Model is also proposed. This project aims to provide a flexible research

platform that could benefit different research labs looking for low-cost HPC platforms.

CODIR on the other hand is the Codelet Model domain-specific language and intermedi-

ate representation built using the already existing Multi-Level Intermediate Representation

(MLIR) compiler infrastructure. It aims to progressively lower a high-level language to an

intermediate representation well suited for maximizing optimization opportunities available

to the compiler while additionally providing a plethora of hardware support. Underlying

CODIR is the Codelet Model which we believe to be the most sound program execution

model for mapping computation to the machine and utilizing all available hardware re-

sources.
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1 Introduction

1.1 CODIR

The arrival of parallelism and heterogeneity to commodity hardware has resulted in the need

to adapt software infrastructures to allow for exploitation of the newly available resources. The

need to conserve already existing programming models and software infrastructure (i.e. com-

pilers, libraries and runtimes) has hindered progress. The noticeable differences in execution

model between Von Neumann-based sequential computation and current parallel architectures,

have forced the software ecosystem to provide solutions that bridge the gap between the two.

We believe that the lack of a general purpose abstraction that describes the structure of the

system as viewed from the perspective of program execution, as well as the behavior of the

program during execution, has resulted in a myriad of ad-hoc software implemented solutions

which impede wide-spread application to various hardware and performance. This abstraction,

which we refer to as the Program Execution Model, has a similar role of the ISA in sequen-

tial architectures; ultimately allowing hardware and software to be independently developed.

However, current parallel execution models often rely on threading [2] and software runtimes

implemented as libraries that are linked during compilation. This does not remedy our prob-

lem as there still must exist a translation to the sequential execution model. Such approaches

limit the ability to implement these execution models through a hardware/software co-design

approach.

Machine learning has emerged as one of the most important computational workloads in

recent years. To meet its growing computational demands, we have seen a rise in the devel-

opment of dataflow-inspired chips specialized for processing neural networks. Cerebras [3] is

a project where its cores are designed specifically for the sparse linear algebra of neural net-

works. To take advantage of this sparsity, the core has built-in fine-grain dataflow scheduling,

so that the computation is triggered by the presence of data. The Tianjic chip [4] adopts a

many-core architecture, re-configurable building blocks, and a streamlined dataflow execution

with hybrid coding schemes. It will accommodate and facilitate both computer-science-based

machine-learning algorithms along with several other coding schemes. However, the develop-

ment of this field still relies on projects that are independently developed. This is natural but is

not conducive to scaling of the software infrastructure, it exacerbates the problem of diversity

of execution models, and it can potentially impede code portability for future architecture.

In addition to these enormous leaps in ML hardware development, there have also been

numerous software frameworks developed such as Tensorflow [5], PyTorch [6], and MXnet [7],

as well as several different representations of the neural network graph. These frameworks have

designed interfaces between the description of the Neural Net (NN) and its execution, allow-

ing creation of different runtime implementations. For example, the Cerebras software stack

provides a seamless interface to existing high-level machine learning frameworks, such as Ten-

sorFlow and PyTorch. The graph compiler begins by extracting a dataflow graph representation

of the neural network from the user-provided framework representation.
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Brain inspired computation represents an excellent example of the aforementioned trend.

Qu et al. [8] shows the synergistic progress between the history of parallel computing, Machine

Learning (ML), and Artificial Intelligence (AI). The recent progress in parallel architectures has

been fundamental to the progress of AI. Although, this field has not been immune to the effects

surrounding the lack of a common program execution model. The consequences to this problem

have been addressed partially by design of abstractions which separate program description to

program execution. However, when implementing the runtime through software approaches

even for execution on heterogenous hardware, the ad-hoc execution models (e.g. OpenMP,

MPI, Intel TBB and Cuda) are still used. Making the ML framework accountable for potential

execution model collisions along with any other possible problems which may be encountered is

crucial. Furthermore, in the case of AI hardware accelerators where entire NNs are offloaded,

the lack of a general purpose abstraction poses challenges to the interoperability with other

computing units.

There exists a need for an infrastructure capable of bridging the gap between high level

programming languages and frameworks with the low level parallel hardware. The initial effort

taken by ML frameworks created descriptions of NN graphs such as those used by Tensorflow

in protobuffer format. However, these do not represent a formal intermediate representation

description that allows for a compilation framework to be built on top leveraging potential

optimizations. Therefore, an opportunity to further analyze the graph at different level rep-

resentations provides the possibilities of optimizations for domain-specific languages and hard-

ware. This process is known as progressive-lowering and is the crux of the problem solved by

Google’s Multi-Level Intermediate Representation (MLIR) compiler infrastructure [9]. MLIR

provides a standardization of the building blocks required for machine learning applications,

to promote scaling and framework independence. While MLIR solves the issues surrounding

the creation of domain-specific languages (DSLs) and progressive lowering, a second necessity

is the program execution model underlying the execution of a neural network. Consideration

must be taken with regards to how the program description is interpreted and executed on the

targeted hardware.

Our proposed solution aims to integrate the view of a system from the perspective of the

Codelet Program Execution Model (PXM) [10], a hybrid dataflow Von Neumann model, into

the MLIR infrastructure to take advantage of progressive-lowering while simultaneously decou-

pling the PXM programming interface from the runtime. This will allow for exploration of a

software implemented runtime, as well as a hardware/software co-design of the PXM. We use

Neural Networks as our evaluation framework, taking advantage of the already existing infras-

tructure for ML in MLIR, together with the natural mapping between neurons and dataflow

models of computation.

In Section 2 we will cover the background information necessary to adequately understand

the problems we aim to address. Section 3 describes the methodology used when creating the

prototype as well as structuring our proposed solution. Finally, in section 8 we will describe

current related works and focus on the future plans of the CAPSL group for moving forward

with development of our vision for a proposed Codelet Model software infrastructure.
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1.2 DEMAC

There is a wide range of applications that benefit from HPC systems, the basic idea of which is

to aggregate computer power in a way that delivers much higher performance than a conven-

tional personal computer would. Dissimilar problems can profit from different approaches or

architectures. The widespread usage of HPC and the need to push the envelope of computation

has boosted the development of heterogeneous architectures, including GPGPUs or FPGAs as

accelerators.

Among the different areas involved in HPC, AI usage has been one of the most rapidly

growing during the past decade. Several fields like economics, biology and chemistry are using

these kind of algorithms to find patterns, perform classification, or simply automate some

activities. The similarities in the morphology of neural networks and dataflow graphs have

provided motivation to use dataflow inspired runtimes. Neurons leverage some features like

data-centric control schemes and fine-grain scheduling and synchronization.

Brain-inspired and neuromorphic chips leverage regular patterns or behaviors in algorithms

that are computationally intensive and can be executed by specialized heterogeneous hardware

that can increase the throughput of AI applications.

Current off-the-shelf, state-of-the-art hardware profits from features that have been used for

generations, providing instruction level parallelism in the processor, multiple levels of memory,

and parallelization techniques. Combined with a language and a compiler that can translate

to machine language, the user can control the computational resources to some extent. This

understanding agreement between the user, the programming language, and how it translates

to the operation of the hardware in the target machine is defined as the program execution

model (PXM).

A PXM describes computation in a broad way: setting a base with the semantics of the

operations that control the machine, the user defines the program to leverage hardware and

software features that support its execution. Research towards novel programming models can

be diminished by the difficulty and high cost of developing new hardware features, leading to

software-only implementations. These do not provide evidence strong enough to support the

implementation of new hardware features in consumer-end processors and existent hardware

features may hinder this kind of program’s execution.

To determine what features improve performance while maintaining programmability, we

need to set a test bench with tools to develop and evaluate these features. This platform must

support custom low-level Hardware-Software (HW-SW) implementations. Developing hardware

at chip level (VLSI) can be costly; an alternative is to use FPGAs to test the operation of

hardware mechanisms first. This system must also have a high level of parallelism.

This paper focuses on the implementation of a multi-core platform that allows us to explore

a mix of new hardware and software features, based on the Codelet Model and inspired by

Dataflow computation, which will be presented in chapter 2 as the background of this paper.

Chapter 5.2.1 presents the hardware aspects of the cluster, while Chapter 5.2.2 describes the

7



software. Chapter 5.2.3 describes the abstraction of the machine and runtime as concepts that

provide a base for the implementation. Chapter 7 describes results and, finally, chapter ??

concludes with some remarks of our research.

2 Background

2.1 CODIR

In this chapter, we provide essential background necessary for the rest of this paper.

2.1.1 Codelet Model

The Codelet Model [11] [12] [13] is a fine-grain, event-driven Program Execution Model(PXM)

designed to fully exploit hardware architectures featuring a high degree of parallelism by decom-

posing an application into a great number of lightweight asynchronous tasks called Codelets.

Codelets can be easily scheduled among cores, with dependence on resource availability, prox-

imity to data to compute, and other constraints.

Each Codelet has a collection of data inputs (respectively, outputs) coming from (respec-

tively, going to) other Codelets. When both data and resource dependencies are satisfied, a

Codelet is said to be ready and is scheduled for non-preemptive atomic execution. Also, since

Codelets only act on their data inputs and outputs which are local to their execution frame,

long-latency memory operations are avoided. Interactions between Codelets are described in

the form of a Codelet Graph (CDG), a directed graph where nodes represent Codelets and arcs

the dependencies between them. The runtime is responsible for the instantiation and scheduling

of Codelets upon satisfaction of dependencies.

CDGs live inside Threaded Procedures (TPs). A TP is an asynchronous function that acts

as a container for a CDG and the data accessed by its Codelets. This provides a second level

of parallelism in the Codelet Model that can be exploited for increasing locality of data. The

number of TPs within an application, as well as the number of Codelets per TP and statements

per Codelet, may vary, providing users with the ability to decompose an application with several

degrees of granularity. An important element stored in the TP are synchronization slots, which

coordinate the dependencies of each instantiated codelet, and therefore the communication

between codelets. Following the argument-fetching model presented by Dennis and Gao [14].

As a PXM, the Codelet Model relies upon an Abstract Machine Model (CAM), which is

mapped at runtime to the target many-core system. For extended information on the structure

of the CAM please refer to [10]. The most important aspect of this abstract machine for this

work is the existence of two resources. A Scheduler Unit (SU) and a Computational Unit (CU).

SUs are in charge of resource scheduling and management, and CUs are in charge of Codelet

computation.
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The Delaware Adaptive Runtime System (DARTS) [15] is currently the most faithful runtime

implementation of the Codelet Model and its Abstract Machine Model (CAM). It is written in

C++ and distributed as free and open-source software [16]. Through class inheritance, DARTS

combines the Codelet Model and Codelet Model Runtime System.

In DARTS, Threaded Procedures (TP) and Codelets (CD) are defined as class object defi-

nitions by the user. Through the use of inheritance and virtual methods, the runtime executes

the user defined methods that comprise the firing of a Codelet, as well as the instantiation

and resource allocation of a Threaded Procedure. Extensive information about DARTS can be

found in [15].

2.1.2 Protocol Buffers

Protocol buffers (or protobuffers) offer the programmer an intuitive interface to serialize struc-

tured data across different languages and platforms in an intuitive, extensible fashion. The

programmer decides how they wish for their messages to be formatted, much like XML. Google

Protobuffers highlight the fact they are ”smaller, faster and simpler” than their XML equiv-

alents. Another advantage of Protocol Buffers is they permit the creation of interfaces that

natively map into different programming languages. Therefore, the same protobuffer descrip-

tion file can be used to generate native libraries in C, C++, Java, Go language and others.

Therefore improving programmability, usability and performance.

Tensorflow’s neural networks provide their own protobuffer description that includes defini-

tions of the Neural Network that includes a Graph as a collection of nodes. Each node has at

least a list of predecessor nodes, an operation type, and a set of attributes containing additional

information of the network. It is possible to store untrained neural networks that contain no

particular weights or values representing just the structure of the network. Additionally, it is

possible to store so-called “frozen” neural networks that are fully trained model ready to be

used for execution.

2.1.3 Multi-Level Intermediate Representation Compiler Infrastructure

[9] Many modern compilers, such as Clang, only provide a single abstraction level like LLVM

IR. This is an optimal abstraction for low level machine code as it offers numerous optimization

opportunities for all machine code generation. It falls short when being the only abstraction

layer to higher level languages and frameworks. The larger the gap grows between a programs

description and its information about the abstract machine underlying the execution, the less

optimized it is for execution on that machine.

It was designed to provide compiler designers access to multiple levels of abstraction to

translate and optimize with through the promotion of progressive-lowering, a process of lowering

code to different levels of abstraction to achieve domain-specific optimizations. These levels of

abstraction are referred to as dialects. A dialect in MLIR is a grouping of operations, attributes,

and data types under a unique namespace (ie. Tensorflow, TF Lite, LLVM IR, etc.). Dialects
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Figure 1: Codelet Model

can borrow and be interchanged with other dialects. For example, if an IR holds useful, source-

level information about its matrix operations, a developer has the opportunity to create their

own linear algebra dialect or even borrow from an already existing IR like the ’linalg’ dialect

integrated into MLIR. Consequentially, it is easy for developers to create their own custom

domain-specific language or even an extension to an already existing language.

2.2 DEMAC

The Codelet Model for computation [11] [12] [13] is a hybrid Von Neumann / Dataflow

Program Execution Model (PXM) that leverages traditional sequential architecture features

while borrowing ideas from dataflow models of computation. We leverage the argument fetching

dataflow to allow exploiting side-effect free parallelism at two different levels: Codelets and

Threaded Procedures. As is the case in dataflow models, there is no strict order of computation

of Codelets, instead they are executed as their structural or data dependencies are satisfied.

While at the Codelet level it is possible to take advantages of features of sequential computation

such as instruction level parallelism and out of order execution.

These features provide the operational semantics, and the expected behavior of the ma-

chine. The program is defined as a Dataflow graph, which is a set of nodes called Codelets

interconnected by edges that represent data dependencies. Tokens are used to represent data

that flows from a node that produces data to a node that consumes it in order to carry out

operations, and they are stored in the Threeaded Procedure.

Codelets are the unit of Computation of the Codelet Model. They are event and data

driven, which means their execution depends upon availability of the resources and data needed

to start the computation.

The Codelet Model maintains the ordering constraints among instructions within the Codelet,

while at the same time loosening the constraints between different Codelets. A Codelet is a se-

quential, non-preemptive, atomically-scheduled set of instructions. (1) Sequentially Executed:
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Modern processors perform sequential execution very efficiently, even when there are many de-

pendencies among the instructions. Features and control mechanisms present in this kind of

processor provides desirable levels of performance without the need for additional, specialized

hardware. (2) Non-Preemptive: Once a Codelet begins execution, it remains active in the CPU

until it is finished executing. (3) Atomic Scheduling: A Codelet cannot be interrupted, so

resources should be allocated exclusively for the execution of it.

Threaded Procedure (TP) consists of one or more Codelets that share local variables

and input parameters of that TP. A Codelet is always part of an enclosing TP, much like

contexts in modern programming languages. The tight coupling between Codelets within these

categories requires a fine-grain level of synchronization and data sharing mechanisms.

Sync-Slots (SS) are used to make sure that all dependencies have been satisfied before a

Codelet is enabled, a counter is used to keep track of tokens received. In a TP, local variables

are used to transfer data from one Codelet to another. Sync-Signals are used as tokens. A

Sync-Slot contains: A Sync-Pointer (SP): Binds the SS to one of the Codelets in the TP. A

Sync-Count (SC): Indicates the number of dependencies to be received by the SS before the

specified Codelet is enabled. A Reset-Count (RC): If SC reaches 0 the Codelet specified by

the SP is enabled. After the Codelet execution has started, SC is set back to the RC. The use

of a RC allows Codelets to be enabled multiple times.

Codelet Abstract Machine (CAM): The program is divided into small pieces (Codelets)

so the machine can divide the workload among multiple cores. CAM’s hardware is composed

of a cluster of nodes that are interconnected by a network. Each node has multiple cores that

can feature a heterogeneous architecture with specialized hardware to manage communication

and synchronization among nodes/cores. The two-layer hierarchy of Codelets and TPs allows

computation to be segmented into two levels of granularity. While TPs are assigned to a node,

Codelets are assigned to cores in that node. At least two specialized processing units must

exist: Scheduling Unit (SE) and Computational Unit (CU). SEs manage synchronization and

tasking, CUs execute Codelets that are assigned and fired by a SE.

The behaviour of the machine is defined based on the different states of a Codelet. First,

there is a pool of “Dormant” Codelets that are not ready to begin execution. When all de-

pendencies have been fulfilled the Codelet changes to “Enabled” state, meaning it is ready to

execute. Since CUs may be busy at that time, there may be a delay between the time a Codelet

is “Enabled” and the time it fires and starts running (which occurs when it is assigned to a

CU it becomes “Active”). Once the Codelet has been executed it becomes “Dormant” again,

allowing it to be executed again. This mechanism is called the “Codelet Execution Engine”, as

represented in Figure 1.

When a procedure is invoked the system allocates and initialize the frame, enabling the

initial Codelet that must wait for the machine to have sufficient resources available for execution.

All other Codelets in the procedure rely on the machine to dynamically verify dependencies.

SS are updated when a Sync-Signal is activated to alert the recipient that a specific control or

data dependency has been satisfied.
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Memory Model defined to support the Codelet PXM, must have the following properties:

(1) All objects in the system which may be accessible by more than one TP must have a globally

unique identifier. This includes: Frame identifier (FID), Codelet identifier (CID) and SS. Each

instance of a codelet can be uniquely identified by a pair (FID, CID). (2) Instruction pointers

are uniform through the system. The code for all threaded procedures and sequential functions

is accessible from all processing elements of the machine, and a given stack pointer value has

the same meaning on all such elements. (3) An active Codelet must have direct, low-latency

access (through load and store operations) to both its private context and the frame it shares

with other Codelets in the same procedural instance. (4) An active sequential function call

must have direct, low-latency access both to its local linear stack and to the frame belonging

to the Codelet which initiated the sequential function call.

Each processor must be able to determine the exact location of any given memory reference.

When the program invokes a TP, the machine creates a context for this procedure, initializing

the input parameters with the values passed to this TP.This also allows the use of recursive

calls. Because procedures are explicitly terminated, no garbage collection of frames is needed.

Operations provided as a set of primitives that may have a hardware or software imple-

mentation to support and manage interaction among processing units or between processing

units and memory. The execution of a Codelet-based program relies on operations performing

the following functions: (1) Invocation and termination of TPs and Codelets, (2) Creation and

manipulation of SS, (3) Sending Sync-Signal to SS, either alone or atomically bound with data

(can be initiated by the consumer or the producer)

3 Motivation & Problem Formulation

3.1 CODIR

In order to improve performance on Neural Networks, there has been an introduction of ac-

celeration hardware. Commercially available General-Purpose GPU (GPGPU) allow the use

of powerful multi-node architectures in desktop computers and clusters. Additionally, multiple

neuromorphic chips inspired by dataflow models of computation have been proposed. Both

approaches have proven to yield to considerable improvements. Although, when it comes to

the integration of heterogeneous systems in general purpose computation, the coordination be-

tween different types of computational units usually involves additional effort for programmers

to define the mapping of computation and hardware resources. Through the use of the Codelet

Model, we expect to lift this burden from software-implemented runtimes and users.

The Codelet Model is an example of a program execution model and therefore requires

hardware and software to agree upon a single structure and operation of parallel systems with

intentions of achieving increases in Performance, Portability, and Productivity. It is possible

to observe the utility of such an abstraction through viewing Instruction Set Architectures as

a contract between software developers and hardware architects for sequential computing. By
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fixing the ISA, a disjoint evolution of hardware and software was allowed resulting in consid-

erable progress in the two worlds. However, for parallel systems no such standards exist for a

proper Program Execution Model. The use of the Codelet Model could provide potential bene-

fits for achieving parallelism of data, pipelining of instructions, and also allowing for improved

utilization of heterogeneous systems.

There has been substantial work on proving the Codelet Model as a feasible program exe-

cution model [1,10,17], many of which use DARTS. However, there are several limitations from

a pure software implementation using C++. First, it is difficult to provide valuable arguments

in favor of a hardware implementation. Second, it provides few opportunities to exploit com-

piler technology. While the former is tackled in the paper ”DEMAC, A Modular Platform for

HW-SW Co-Design” [18] co-published with this work, we aim to tackle the second problem by

creating a software infrastructure of the Codelet Model API.

By utilizing MLIR, we propose a dialect that allows for the representation of programs in

the form of Threaded Procedures and Codelets as explained in Section 2. This infrastructure

will foster an environment suited for Codelet Model optimizations much like LLVM does with

LLVM IR. For example, LLVM is able to apply the axioms that govern the fused-multiply-add

operation to perform optimizations which may require switching the order of operands. Without

the context of these axioms (commutativity, associativity, transitivity, etc.) the compiler would

be constrained to treating this operation as a generic operation. If this was the case the compiler

would not be able to perform the operand switching necessary for the given optimization.

The MLIR compiler infrastructure provides ample opportunity for developers to include this

underlying understanding of the domain one builds a compiler for. In creating our own CODIR

Dialect, we will be able to integrate the concepts of the PXM into a compiler able to optimize

Codelets while simultaneously decoupling the runtime to explore different implementations

through code generation to either software or hardware targets.

To demonstrate the efficiency of this approach we target ML applications with a DSL that

acts as a user of the PXM. The similarities shared between the Codelet Model and the human

brain make it a suitable program execution model for AI applications. We intend to exploit the

similarities between Neurons of a Neural Network and Dataflow based models of computation,

similar to the work conducted by [1].

It becomes imperative to decouple the programming interface from the executing hardware

in order to achieve this. Not only that would allow us to progress in hardware development

without requiring a re-structuring of our programs, but it would allow us to explore compiler

technology for the optimization of Codelet-based programs.

To explore hardware implementations of the Codelet Model we also propose The Delaware

Modular Assembly Cluster (DEMAC), designed to integrate an array of embedded systems with

a set of 3D-printed frames that provide support for the boards, the cooling units, and power

units. Each board of the DEMAC cluster combines the resources of a dual-core processor, a

16-core coprocessor, and an embedded FPGA with the flexibility of a complete open-source

stack. The mount is a low-cost implementation with a scalable, open-source structure designed
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to fit 4 units of a standard sized rack. Having multiple nodes allows us to explore distributed

versions of the Codelet Model where there is no notion of shared-memory.

This work aims to solve two address two important questions in the research of the Codelet

Model:

• What is the appropriate software infrastructure and abstraction to allow for Codelet

programs to be defined, optimized and lowered to the hardware API?

• What is the appropriate methodology to design and implement such software infrastruc-

ture?

4 Contributions

4.1 CODIR

The main contributions of the paper are as follows: (1) Decouple program structure from

the current API implementation of the Codelet Model (DARTS) to allow for an environment

suitable for structural reorganization of programs, perform optimizations, and progressively

lower programs to machine code (2) Describe some of the fundamental syntax and semantics

necessary for an intermediate representation to unify high level languages representation of the

Codelet PXM (3) Define a basic language with operations, types, and attributes required for

representing a Dataflow program and the translation of high level languages to machine code

or runtime system API.

4.2 DEMAC

The major contributions of this project are: (1) Designing and implementing the cluster as a

platform to develop and test hardware-software co-design features for the Codelet PXM. (2)

Developing the extension of the PXM for a distributed runtime, including the description of

mechanisms and software implementations. (3) Developing hardware features using the FPGA

to implement specialized modules that support the execution of programs defined with the

PXM API. These contributions are milestones towards the main objective of research carried

out in CAPSL group and are used by other members in different projects.

5 Solution Methodology

5.1 CODIR

The current implementation of the Codelet Model in the DARTS C++ library features a com-

bination between runtime and Codelet Model API. We seek to decouple these two elements
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figures/CodeletDialect.pdf

Figure 2: Codelet Dialect Software Infrastructure

while allowing reusability of the API into other implementations of the runtime model using

the MLIR compiler infrastructure. This infrastructure is presented in Figure 2. There are three

major parts in the infrastructure. The Hardware, the Runtime Systems and the MLIR front

end. At the hardware level, we map the Codelet Abstract Machine parts. The different Colors

of the Computational Units represent the potential for heterogeneity. There exists two possi-

ble paths for a runtime implementation: An LLVM based implementation that connects to a

stripped down version of the DARTS runtime system as a linked library during the computation

as well as a hardware software co-design implementation (e.g. the DEMAC cluster). Finally,

the MLIR shows the definition of a Codelet Dialect that allows for codelet optimizations and

code generation. It also demonstrates the connection to other dialects such as the Tensorflow

Dialect, for progressing lowering of higher level domain specific languages.

5.1.1 CODIR: MLIR Dialect

The Codelet Model Intermediate Representation (CODIR) is our proposed dialect to create a

compiler and domain-specific language for the Codelet Model. We believe MLIR is the compiler

infrastructure to build this upon due to its adoption across the industry and its design rationale

matching our goals exactly. These types will have to emulate the same properties, respectively

outlined in the Codelet Program Execution Model. Codelets, for example, will have to be non-

preemptive, atomically scheduled, and be side-effect free. Additionally there should be some ba-
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sic structures and functions for the Codelet type. First, a Codelet should have a state which can

change between ready, enabled, dormant, and firing and should be visible to the enclosing TP.

Based on this state, the Codelet could execute the fire function which is abstracted from the user.

This function should consist of three parts: (1) Consume input tokens and read from memory.

(2) Execute the instructions contained in the Codelet. (3) Write results to memory and place to-

kens on the corresponding output arcs. The user should only have to manage defining the inputs

and outputs along with designing the code to be executed when the Codelet fires. The Codelets

should have a respective ID such that it can be easily referenced and properly debugged. MLIR

aids in the debugging process by requiring location information throughout the definition of a

Codelet. To this end, it will be trivial to search for a point of error during compilation so long as

an instance of a type has a unique ID. The Codelet type should also have a synchronization slot

(sync slot) structure to store information about its dependencies including the number of to-

kens currently present in its input arc(s) and adjust its state accordingly. Beyond just Codelets,

there must exist a Threaded Procedure type as well. This type should function similarly to

that of a task in OpenMP in that it should be declared with an input list and output list aimed

at addressing problems involving data races. The analysis and prevention of data races at the

compiler level can be incredibly difficult and not always necessary so we leave their management

up to the user. The example below illustrates a potential implementation of our language using

a directive-style extension to C-family languages much like the OpenMP Platform.

1 /* Fibonacci Example */

2 #pragma codir tp id{"fib"} in(int n) out(result) {

3 fib(int n, int &result, SYNC done){

4 /* TP frame attributes */

5 int x, y;

6 /* Create Codelets */

7 #pragma codir cod id("check") dep(0,0) {

8 if (n < 2) {

9 SYNC(n, result, done);

10 } else

11 /*Asynchronous Calls*/

12 x = fib(n-1, &x, adder);

13 y = fib(n-2, &y, adder);

14 }

15 }

16 #pragma codir cod id("adder") dep(2,2) {

17 /* result is the token

18 and done is the sync slot */

19 SYNC(x+y, result, done);

20 }

21 }

22 }

• Line 1: The tp() directive denotes the enclosed code as a threaded procedure declaration

which can be referenced through the id("fib"). The fib TP takes in an integer n as
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input, outputs to a reference to an integer result in another TP, and upon completion of

the tp, signals the done Codelet through its respective sync slot

• Line 3 Declares two variables, x and ]y, local to the TP frame and available to the inner

CDG.

• Line 6 Instantiates a check Codelet. This Codelet uses the argument n of the TP and

either spawns two more fib TPs or signals back the caller for continuation.

• Line 9 If n is less than 2, the recursion ends and the value is sent to the caller TP. the

SYNC operation assigns the value of n to the result location in the caller TP, and signals

the codelet referenced by done, which is also located in the caller TP.

• Lines 12 & 13 If n is greater than two, recursively spawn two fib TPs with n− 1 and

n−2 as the input number respectively. The new TPs are asynchronously executed. When

their execution finishes, the results are sent to x and y respectively. These two variables

represent the data of the token that is needed by the adder Codelet. The adder Codelet

is sent in order to allow the callee to signal back when the data is available. In reality the

signaling mechanism is done through the sync slot.

• Line 16 Instantiate an additional Codelet adder which takes in the values written to

memory locations x and y available in the frame TP, and writes their summation to

the result reference of the caller TP. The SYNC function in Line 19 also triggers the

continuation codelet of the caller TP.

There are many more aspects we still must consider at length to ensure the most intuitive,

efficient, and scalable Codelet Model domain-specific language. After writing in our DSL, the

users code will go through several stages of progressive lowering to intermediate representation,

with the most relevant one being the CODIR Dialect. Because of the nature of MLIR, we will

be able to provide the compiler with source level information about the Codelet Graph, thus

leading to Codelet Model specific optimizations with context similar to LLVM’s understanding

of the add operation previously mentioned. Following CODIR, we will have the options to lower

to LLVM IR and link to a runtime environment built into LLVM or lower to DEMAC IR such

that a hardware-software codesign runtime environment can be explored.

5.1.2 Neural Networks to CODIR

Given the data-driven and event-driven nature of data-flow inspired execution models, it is

possible to observe similarities between Codelets and Neural Networks. Three characteristics

that are directly comparable are as follows. (1) The execution of both Codelets and Neurons

only depends on their inputs. There are no side effects on the execution of a Codelet other than

its outputs. (2) The activation function of a neuron is comparable with the operation that is

described inside a Codelet. (3) The direct acyclic graph formed by a Codelet graph is flexible

enough to be able to represent a neural network without requiring any modification.
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Figure 3: Mapping Neurons to Codelet [1]

However, there are other aspects that need extra consideration. For example, information

in a neural network is stored in a distributed way. In the Codelet Model. In order to achieve

this, the distribution of weights and data of the NN can be mapped to the concept of Threaded

Procedures, as it also stores the context for the execution of Codelets.

5.1.3 Protocol Buffers to DARTS

Previous work in [1] showed the benefits of mapping Neural Networks to the Codelet Model,

however the LeNet implementation of this paper was written manually. We are working on a

prototype transpiler that, based on Neural Networks described through protobuffer, it generates

an implementation in DARTS C++ code interface [19]. Preliminary results for this framework

will be included with the final version of this manuscript. The approach is to implement the

operands in the NN in DARTS (e.g. Conv2D and MaxPool) as well as the concept of Tensors.

Then, we generate the mapping of the NN connections and context as threaded procedures and

signals between Codelets, resulting in an implementation of the NN in the Codelet Program

Execution Model.

The transpiler is implemented through Python’s Tensorflow library, which allows for easy

parsing of information within a protobuffer binary file. The programmer is able to see a com-

prehensive list of all nodes in the network, their inputs, attributes, etc. The programmer has all

of the necessary information for generating Codelets. The lack of ability to spawn special TPs

is remedied by the programmer having an understanding of the NN algorithm used to achieve

the desired result. For example, the facial recognition algorithm, MTCNN [20], utilizes three

different networks (Pnet, Rnet, and Onet). It is natural to divide work into three TPs, though

the transpiler can be easily extended to perform a more in-depth analysis which can design the

most efficient separation of Codelets into TPs to achieve maximum parallelism.
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Figure 4: DEMAC: Delaware Modular Assembly Cluster

5.2 DEMAC

5.2.1 Hardware

To support developing and testing hardware and software features based on the Codelet PXM,

we propose a platform composed of multiple nodes interconnected by a network. Each node is a

multi-core off-the-shelf embedded system that provides a Linux-based environment. Additional

requirements are for the system to include an FPGA and an open-source stack to support

further development.

DEMAC: The Delaware Modular Assembly Cluster is designed to integrate an array of

embedded systems with a set of 3D printed frames that provide support for the boards, the

cooling units, and the power units. Each board [21] combines the resources of a dual-core

processor, a 16-core coprocessor, and an embedded FPGA with the flexibility of a complete

open-source stack. The mount is a low-cost implementation with a scalable structure designed

to fit 4 units of a standard size rack. Files for the frames are open source. Having multiple

nodes allows us to explore distributed versions of the Codelet Model where there is no notion

of shared-memory.

DEMAC has 5 different frames:

• Board Tray: Holds a board and a label with the name of the node (NOPA##)

• Board Casing: Provides housing for 4 Board Trays

• Power Casing: Holds usb hub to power 4 boards

19



Figure 5: Embedded system used in DEMAC

• Fan Casing: Air input and output are designed to allow a fan to independently cool

down a whole Board Casing

• Cooling Auxiliary Casing: Necessary to complete the structure to be mounted on a

rack

The cluster is mounted on top of a switch that provides an ethernet connection between

the nodes and the HeadNode. Each board is connected to the switch using an RJ-45 cable.

The HeadNode allows users to interface with the nodes. 12 Board Trays, installed in 3 Board

Casings with their respective power supplies and interconnected by 3 Fan Casings and a Cooling

Auxiliary Casing are used to build a structure that fits a standard rack. Power for the boards

is independent from the auxiliary systems (Cooling and Network).

Developing hardware-level features for the Codelet Model is possible by using the on-chip

FPGA. The many RISC Cores of the coprocessor can be used as SUs or CUs, and the lack of

cache coherency allows us to explore more flexible memory models as well as different mapping

mechanisms for the Codelet Abstract Machine. The low cost of the system and its open-source

nature promotes interdisciplinary collaborations and expansion of parallel computing to other

fields (e.g. Artificial intelligence, molecular dynamics, robotics).

Embedded System board used is affordable, highly parallel, and open source. It fea-

tures a programmable logic/main processor combined chip and a multi-core accelerator. The

accelerator operates on a RISC architecture and is used to offload computation for accelera-

tion. The accelerator, together with its low cost and the openness of its software stack, is what

makes the embedded system unique and a great fit for our purpose. The board runs full-fledged

Ubuntu 15.04, modified to contain the drivers that communicate with the accelerator through

programmable logic implemented on the FPGA.
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Each core of the accelerator has 32 KB of scratchpad memory that can be accessed by other

cores. There is no coherency protocol, the memory model is relaxed, and there are instructions

that allow atomic access. The user is responsible for managing this memory and using it for

code and data. Programming the system is possible using C, assembly language, and some

limited functionalities of C++. However, all of the software stack (i.e. operating system,

drivers, libraries, and FPGA code) is completely open source.

Thanks to these properties, the system is highly flexible and customizable. Its barebones

design allows us to remove some of the burden present in current microprocessors (e.g. cache

coherency protocols) that have shown to be detrimental to the performance of the Codelet Model

implementations. However, it also makes the execution of this project more challenging.

5.2.2 Software

Each board runs a customized linux distribution, allowing us to use this embedded system as a

computer connected to a network. The current implementation includes OpenMP and MPI on

the dual-core processor of each node. While OpenMP is used to communicate and synchronize

the cores on the main processor in a single node, MPI provides the mechanisms to control

and share data among the different nodes through the network. Their main advantages are

portability, ease-of-use and a clearly defined set of routines. The communication between nodes

is established using an ethernet switch. A Network File System (NFS) based on sshfs allows

all the nodes to access the same executable program.

CODIR: Codelet Dialect for IR. In order to decouple the API of the Codelet Model

from the runtime, and to allow the use of compiler technology at the Codelet level we have

defined an MLIR dialect that represents operations and computational elements of the Codelet

Model. Such approach would also allow for mapping to different hardware and software based

implementations of the runtime, providing re-usability of infrastructure and optimizations as

well as progressive lowering of Codelet Code into runtime executable instructions. The details

of this work are presented in the paper ”CODIR: Towards an MLIR Codelet Model Dialect” [?]

to be submitted in conjuntion with this work.

eSDK is a set of software tools [?] provided by board developers to configure and interface

with its hardware features. This includes compiler, debugger, assembler, libraries linker and

loader to interact with the coprocessor. The first four are used to write code to execute in

the accelerator, the assembler is used to define low level functions. The linker and loader

describes the mechanisms that deal with memory management, this can be modified to define

allocation policies. Functions defined in the libraries are used to manage memory allocation

and computation execution of cores in the accelerator.

5.2.3 Runtime

Dataflow runtimes carry out computation of programs represented as a direct acyclic graph

where nodes are sets of instructions and edges define data dependencies, rules define that nodes
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can begin execution only if all data dependencies have been met. There is no specific order in

the execution of Codelets in a program, only that given by the data as it becomes available.

Legacy Runtimes are previous implementations that provide a base-ground to define

the mechanisms required to support a dataflow runtime. EARTH model [22, 23] describes

the functionality of the elements that are essential in this kind of architecture to schedule

and execute Dataflow programs. In Addition to describing the architecture and operations, it

provides software tools as a C-library and a hardware implementation: The EARTH-MANNA

Machine [24].

Another remarkable project that includes hardware implementation is Cyclops-64 [25], Im-

plemented as an accelerator with a Dataflow-based runtime, computation is offloaded from

a cluster with a conventional architecture into a computational array of nodes with multiple

cores. Sections of programs can be executed by a myriad cores, ruled by dataflow semantics

in a specialized system that reduces the overhead caused by conventional OS to carry out

computation.

The first one describes an implementation of a Dataflow machine that includes hardware

features to manage communication and synchronization among nodes, while the second one is

more similar to an accelerator, where specialized hardware is attached to a host system that

provides an interface to offload computation.

DARTS: Delaware Adaptive Runtime System [15, 17], is a software implementation for a

multi-core, single-node system. It is written in C++ and distributed as free and open-source

software. Threaded Procedures (TP) and Codelets are defined as class objects at compile time

and are instantiated at runtime. A TP is instantiated when a Codelet performs a TP invocation.

This operation creates a TP handle and sends a request to the runtime to allocate memory for

the TP instance and the instances of the Codelets it contains. Once this is done, Codelet

instances are executed upon satisfaction of their dependencies.

A two-level scheduling mechanism, comprising TP schedulers and micro-schedulers, is used

for the scheduling and execution of Codelets. A TP scheduler is a core which has been assigned

the role of SU and has a TP queue (TPQ) with TP instantiation requests and a ready-Codelets

queue (RCQ). A microscheduler is a core acting as a CU with a Local Codelet queue (LCQ),

which is fed by its local TP scheduler with Codelets from its RCQ.

eDARTS: One of the major limitations that the accelerator chip is its limited support for

C++ features. In addition to this, its memory is flexible, but requires the user or runtime

to manage it. Previous implementations of DARTS provided an API that heavily borrowed

from inheritance in C++ classes. However, because of its unique architecture it is necessary to

recreate the fundamental instruments in DARTS specifically for the accelerator. As a result, we

have created eDARTS [26], a C implementation of DARTS specifically catered to the accelerator

chip and its memory architecture. Several various assets have been created to bridge the gap

between the architectures including, but not limited to:

• Queues: Manages codelets as well as threaded-procedures
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Figure 6: DECARD Abstract Machine Model

Figure 7: HW-Software Co-design

• Synchronization mechanisms (Mutex, Barrier)

• Memory allocation and management: Allows for the management of the scratchpad mem-

ory on-board each core of the accelerator (ie. local memory, distributed-local memory,

and off-chip: global memory stored in the DRAM)

• Computational Unit (CU): Used for designating a given core to be a core for carrying out

computation.

• Scheduling Unit (SU): Iterates through list of Codelets, waiting for event signals. For

every event signal, it decrements the respective codelet’s dependency counter. Once an

iterated node has a dependency count of zero, it facilitates the execution then repeats the

process until the end of the program

DECARD: Distributed Execution Codelet Accelerated Runtime for Dataflow, allows task
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scheduling and communication of a multi-node system. Providing a distributed-global shared-

address space requires mechanisms that allow processing elements to access memory from dif-

ferent nodes. To implement these, DEMAC features two elements with the following functions:

• Node Manager: It interfaces with the accelerator. A TP Queue that act as a FIFO buffer,

holds the Threaded Procedures generated by eDARTS that should be executed in other

nodes and incoming TPs from other nodes.

• Node Communicator: It is in charge of the communications between nodes (TPs, Sync-

Slots across TPs and Data) and allocating them in local memory.

The upper part of Figure 7 represents a software-based implementation, while the lower part

represents a hardware implementation of modules that carry out these functions. In the first

one, the Node Manager uses the libraries provided with the eSDK to schedule and manage tasks

in the accelerator and relies on OpenMP to share information with the Node Communicator.

The Node Communicator uses MPI functions to send and receive information to/from other

nodes in the system.

On the hardware version, these two modules are implemented on the FPGA. The com-

munication manager interfaces directly with the network through some of the chip’s I/O pins,

allowing having multiple ports to create a more interconnected network structure in some sort of

3-dimensional array. The node manager administrate TP Queues and hardware resources to ex-

ecute computation and interfaces with the communication manager to send/receive information

to/from other nodes.

6 Related Work

6.1 Codelet Model LeNet5

The Codelet Model implementation of the LeNet NN by Zeng et. al. [1] shows hopeful results for

this PXM. When analyzing a parallel model, superior computational efficiency and scalability

are top priorities for success. Efficiency referring to the ability to achieve high utilization of the

available hardware resources, and scalability referring to the ability to maintain performance as

the number of available computing units increases. The authors used LeNet as a benchmark ML

application for comparing the efficiency and scalability of the Codelet Model when compared

to current popular frameworks and execution models such as OpenMP. LeNet5 is considered a

classic NN used for digit recognition. Two versions of the network created: A pure DARTS

implementation and a TensorFlow-embedded DARTS design. Running the network using the

DARTS implementation shows promising speedup over OpenMP as the number of threads

was increased. When comparing TensorFlow to a TF-DARTS model it too showed improved

performance for higher core counts.
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6.2 MLIR Dialects

MLIR’s dialect construct has been integrated into several successful projects already. One exam-

ple is the Intermediate Representation Execution Environment (IREE) [27]. IREE functions as

an end-to-end compiler for lowering intensive ML applications down to a unified representation

for real-time inference against hardware accelerators. The goal of the project is to encode both

the scheduling logic used for dependency communications and the execution logic into hardware

and API-specific binaries. IREE is compilation-based and therefore does not map ops to their

kernel representations making it There does not exist an IREE runtime environment as it is

compilation-based and does not map ops to their respective kernel implementations. Conse-

quentially, there does not exist a runtime environment for IREE. The dialect relies on Tensors

as their main datatype which differs from the approach we aim to take; having Codelets and

Threaded Procedures being the main types. Additionally, we plan on creating a full runtime

environment for the Codelet model, further differentiating our visions.

Intel has also developed their own dialect, PlaidML [28], with the intention of making

deep learning applications executable across any hardware. They leverage MLIR to make the

integration of new software and hardware into their compiler stack as well as taking advantage

of the easily implemented optimizations available. In addition, they have created a custom

C++/Python embedded domain-specific language known as EDSL to promote ease of use for

developers wanting to use PlaidML. The emphasis of this project is placed on extensibility across

all different types of hardware including desktop/laptop computers, embedded systems, mobile

phones, and server technology. Our project also aims to be portable across a range of hardware

and accessible to developers though while additionally providing numerous benefits over many

traditional program execution models. We intend to unify the PXM of the system as a whole,

and then use ML as a target application that demonstrate the need for such abstraction.

7 Preliminary Results

Running the implemented functions on DEMAC allowed us to test the correct execution of the

previously described algorithms. Our long term goal is to test the viability of Dataflow-based

machines. At this point we have achieved several independent advances among the different

layers. We have been able to: (1) Successfully run eDARTS on the accelerator chip, setting up

different configurations of Scheduling Units and Computational Units as well as the execution

of operations required for a NN algorithm such as Matrix Multiplication, Convolution, Relu,

Vector addition, among others. (2) Successfully modify the FPGA bitstream to support hard-

ware implementations native to the Codelet Abstract Machine like TPQueues and SyncSlots.

Now moving forward to implement Scheduling and Communication modules. (3) Successfully

run DECARD to establish multi node communication across the cluster, enforcing Dataflow

principles and natives, scheduling tasks and keeping track of the tasks spawned from node to

node as well as data dependencies.
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8 Future Work

8.1 CODIR

Future work for the CAPSL group will consist of the development of the CODIR Dialect along

with a runtime environment to be created within LLVM. In accomplishing this we will have

created an alternative to other popular frameworks including TensorFlow, PyTorch, mxNET,

and many more. Having this as a resource would provide a direct opportunity to compare the

viability of the Codelet Model over other program execution models. An additional benefit is

providing accessible programmability of the Codelet Model.

8.2 DEMAC

This paper defines the necessary mapping between the Codelet Program Execution Model of

computation, and the DEMAC infrastructure. However, as expected from system design, there

is still a lot of details to narrow down. Current implementation of DARTS lacks the needed

mechanisms for distributed computation. We have started to define the mechanisms through

MPI to achieve this. eDARTS implementation is also on the way and there is still 20% left to

be done. Perhaps the most challenging part of it is the FPGA implementation, which requires

us to modify the current implementation. Such implementation is openly available, but the lack

of good documentation has made the process difficult. Currently we have achieved generating

the original bitstream from scratch, and we have started including new designs together with

the already existing one. There is also a need to do the necessary modifications in order to

create the communication between the Linux kernel and the modified FPGA version.

9 Conclusion and Future Results

9.1 CODIR

We conclude that creating the CODIR dialect using the existing MLIR infrastructure to create a

domain-specific language along with a compiler for the Codelet Model would grant users access

to the countless benefits associated with the underlying execution model. The model’s efficacy

has been demonstrated already through the research conducted by many different groups for a

variety of projects. For this reason, we are confident progressing the accessibility of the model

will provide promising future results when comparing to other frameworks and program exe-

cution models. The dialect would act as a direct software interface with the model through

the domain specific language. Additionally, the progressive lowering promoted by the MLIR

infrastructure would permit a custom compiler to apply knowledge specifically pertaining to

the axioms governing Codelets. Finally, then lowering to a plethora of hetergeneous hardware

targets with intentions of applying our future work to the DEMAC cluster [18] ultimately pro-

viding an opportunity to lower code to a hardware-software codesign implementation of the
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Codelet Model.

The gap between software frameworks and machine code generation will only continue to

grow if a standard program execution model governing the contract between a program’s de-

scription and how it will be executed on the target hardware continues to not exist. We believe

the Codelet Model is this model and through continued development of our proposed Software

Infrastructure we are confident the viability of the model will not go unnoticed.

9.2 DEMAC

We can conclude that having this kind of platform to support HW-SW co-design is fundamental

to implement and evaluate features that can increase the synergy of the Codelet PXM with a

physical machine. The flexibility and versatility of this system allows us to better understand

current computational capabilities and limitations regarding traditional programming models.

This project provides an environment where we can define computation in a broad way and

extend the abilities of these kind of systems.
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